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Abstract Adsorption of trimers and hexamers built of
identical spheres was studied numerically using the random
sequential adsorption (RSA) algorithm. Particles were
adsorbed on a two-dimensional, flat and homogeneous
surface. Numerical simulations allowed us to determine the
maximal random coverage ratio, RSA kinetics as well as the
available surface function (ASF), which is crucial for
determining the kinetics of the adsorption process obtained
experimentally. Additionally, the density autocorrelation
function was measured. All the results were compared with
previous results obtained for spheres, dimers and tetramers.
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Introduction

The high interest in irreversible adsorption results from its
numerous practical applications in many fields such as
medicine and material sciences as well as in the
pharmaceutical and cosmetic industries. Adsorption is crucial
in blood coagulation [1], inflammatory response [2], plaque
formation [3], fouling of contact lenses [4] as well as for
ultrafiltration and the operation of membrane filtration units
[5]. Controlled adsorption is a prerequisite for efficient
chromatographic separation and purification, and gel
electrophoresis.

The simplest algorithm used for numerical modelling of
irreversible adsorption processes is the random sequential
adsorption (RSA) algorithm introduced by Feder [6]. It was
first used to model the adsorption of spherical molecules, but
soon came to be used also for modelling more complex
particles like ellipsoids, spherocilinders, and so on (e.g.,
[7–13]). However, it has been shown only recently that, for
the purposes of adsorption modelling, complex molecules can
be approximated successfully using coarse-grain models
[14–17]. For example, a coarse-grain model of fibrinogen
can successfully explain the density of an adsorbedmonolayer
for a wide range of experimental conditions [18–20].

This study focuses on the RSA of trimers and hexamers
built of identical spheres on a flat and homogeneous two-
dimensional surface. There are at least two reasons to justify
making a study of this subject. Firstly, trimers and hexamers
are the only basic structures that have not yet been analyzed
using coarse-grain models and RSA, despite the interest in
simpler models like dimers [21], tetramers [22] or polymers
[23]. This work simply completes the library of RSA
properties for common basic structures. Secondly, it has been
shown that RSA kinetics for tetramers are similar to those
observed for anisotropic molecules and different from those of
spheres [22]. As a sphere is a better approximation of a
hexamer than a tetramer it would be interesting to explore its
RSA kinetics. The primary aim of this paper was to find the
saturated random coverage ratio of monolayers built as a result
of irreversible trimer and hexamer adsorption. Additionally,
we want to determine available surface function, which is
crucial for estimating the kinetics of the adsorption process.

Model

Themodel of a trimer and a hexamer consists of three or seven
identical spheres, respectively, as shown in Fig. 1. The radius
of a single sphere is r0, and it functions as a length unit.

The molecules are placed on a square flat collector surface
according to the RSA algorithm [6], which is described in
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detail elsewhere [22]. The algorithm iteratively attempts to
place a randomly oriented and positioned particle on the
collector. If this particle does not overlap with previously
adsorbed particles it is irreversibly adsorbed and holds its
place until the end of the simulation. If there is an overlap,
the particle is removed and abandoned. The number of
algorithm iterations N is commonly expressed using
dimensionless time:

t ¼ N
SM
SC

; ð1Þ

where SM is an area covered by a single trimer (3πr 0
2) or

hexamer (7πr 0
2) and SC is collector size. In the case of

these simulations, square collectors of side 103r 0 were
used, so SC=10

6r 0
2. Simulations were run until t =105,

which corresponds to N ¼ 105
106r20
SM

algorithm steps.
During simulation, the current coverage ratio θ (t )

was monitored:

θ tð Þ ¼ n tð ÞSM
SC

; ð2Þ

where n (t ) is the number of adsorbed particles after the
number of steps corresponding to dimensionless time t .
To decrease statistical error, 100 independent RSA
simulations were performed for each model.

Results and discussion

Obtained example coverages are presented in Fig. 2.
In general, saturated coverage ratio—one of the most

important characteristic of an adsorption layer—is reached
after an infinite number of RSA iterations: θmax≡θ (t→∞ ).
Therefore, to determine it from a finite time simulation, the
RSA kinetics model has to be used.

Kinetics of RSA

For spheres, the kinetics of the RSA obeys the Feder
law [24, 25]:

θmax−θ tð Þ∼t−1=d; ð3Þ

where d is a collector dimension and t is a dimensionless time
(1). Relation (3) has been tested numerically and appears to be
valid for one to six dimensional collectors [26] as well as for
fractal collectors having 0<d <3 [27, 28]. For different
adsorbates: ellipsoids, dimers and polymers, it is also valid;
however, parameter d depends also on particle anisotropy and
their number of degrees of freedom [23, 29]. For example for
dimers, tetramers and adsorption of stiff elongated particles on
a two-dimensional surface, d ≈3.

For a large enough time, t , the exponent in Eq. 3 can be
measured directly from dθ /dt dependence on t using the least
squares approximation method (see Fig. 3).

For both trimer and hexamer, the obtained values of
parameter d are significantly larger than 2—the value
expected for spherical particles. This is particularly surprising
in the case of hexamer adsorption, for which the shape
anisotropy is very small, and d is bigger than for a trimer.

Saturated random coverage ratio

Having determined the RSA kinetics, Eq. (3) can be rewritten
as θ(y )=θmax−Ay, where A is a constant coefficient and y =t−
1/d. Saturated random coverage ratio θmax is obtained by a
linear approximation of this relation for y =0. Here, θmax=
0.5234 and θmax=0.4920 for trimers and hexamers,
respectively. The relative error for both the values is
approximately 0.5 %. This originates mainly from the
statistics: the standard deviation of deposited particles at the
end of a simulation, as well as from error of adsorption
kinetics fit. The ratio obtained is smaller than θmax≈0.54
obtained for spheres [26], dimers [21] or very short polymers
[23]. The θmax for trimers is, however, very similar to the
value obtained for the rhomboid model of a tetramer [22].

Fig. 1 Models of a trimer (left) and a hexamer (right). All spheres
(monomers) have radius r0

Fig. 2 Example coverages built of trimers (left) and hexamers (right)
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Adsorption kinetics

The kinetics of the adsorption process depends on two factors.
The first is a transport process, which shifts particles close to
the surface or interface, where they are then adsorbed. As it
depends on the specific experimental conditions, it is rarely
the subject of general theoretical analysis. The second factor is
probability of adsorption, which changes with diminishing
area of uncovered surface. The dependence between
adsorption probability and temporary coverage ratio is defined
as the available surface function (ASF) and can be determined
easily from the RSA simulation. Figure 4 shows the ASF

dependence on normalized coverage θ ¼ θ=θmax .
For almost empty collector (small θ ), the probability

decreases linearly because each successful adsorption act

blocks a specified amount of the collector surface. As θ
grows, these blocked areas start to overlap, which slows
down the rate of probability decrease. Therefore, for
low values of θ , the ASF(θ ) is typically approximated
by a quadratic fit [9, 11, 30]:

ASF θð Þ ¼ 1−C1θþ C2θ
2 þ o θ2

� �
; ð4Þ

where the expansion coefficient C1 corresponds to the surface
area blocked by a single particle, whereas C2 denotes a cross-
section of the area blocked by two independent molecules.
Both are directly related to the second B2=1/2C1 and third
B3=1/3C1

2−2/3C2 viral coefficients of the equilibrium trimer
or hexamer monolayer [9, 30]. For example, the 2D pressure
P and the chemical potential of particleμ can be expressed via
the series expansion at a low coverage limit [30]

P ¼ kBT

S F
θþ B2θ

2 þ B3θ
3 þ o θ3

� �� �
;

μ ¼ μ0 þ kBT lnθþ 2B2θþ 3

2
B3θ

3 þ o θ3
� �

� �
;

ð5Þ

where kB is the Boltzmann constant, T is the absolute
temperature, and μ0 is the reference potential.

Results presented in Fig. 4 show that C1 for both particle
types is approximately 15 % bigger than for a spherical
particle, for which C1=4. Parameter C2 is almost 50 % larger
than for spheres (C2≈3.308), which is probably the result of
more irregular shape as this parameter is significantly bigger
for the trimer model than for the hexamer model.

The saturation limit of the ASF, is more important for
adsorption kinetics calculations [18, 31], and is, for particles
characterized by exponent d ≈3, typically approximated by
[11]:

ASF θ
� �

¼ 1þ a1θþ a2θ
2 þ a3θ

3
� �

1−θ
� �4

: ð6Þ
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Fig. 4 Dependence of available surface function (ASF) on a normalized
coverage ratio. Triangles and circles are simulation data for the trimer
and hexamer model, respectively. Solid lines correspond to the fits (4)
obtained for θ < 0:2 : ASF(θ)=1−4.755 θ +5.107 θ2 for the trimer
adsorption and ASF(θ )=1−4.664 θ +4.797 θ 2 for the hexamer
adsorption. Inset Same data on a logarithmic scale, and fits there

correspond to: ASF θ
� � ¼ 1−1:315 θþ 4:007 θ

2−5:977 θ
3

� �
1−θ4

� �

for trimer and ASF θ
� � ¼ 1−0:121 θþ 10:884 θ

2−8:684 θ
3

� �
1−θ4

� �

for hexamer model
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Fig. 5 Dependence of normalized density variance on coverage ratio.
Triangles and circles are measured values for the trimer and the hexamer
model, respectively; whereas solid lines correspond to the ASF fit in a
low coverage limit (4)
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Fig. 3 Dependence of time derivative of the mean number of adsorbed
particles on dimensionless time. Triangles and circles are simulation data
for trimer and hexamer, respectively, whereas solid lines correspond to
power fits obtained for t >1,000: dn /dt =9865.7t−1.325 for the trimer
model and dn /dt =2375.6t−1.301 for the hexamer model. Determined
values of exponent d in Eq. (3) are as follows: d=3.08 and d=3.32 for
trimer and hexamer model, respectively
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The last factor in the above equation is related directly to
Eq. 3 as the adsorption probability is proportional to the
growth rate of θ . Exponent 4 here results from d ≈3. As shown
in the inset in Fig. 4, the above relation is also valid for trimer
and hexamer adsorption.

Coverage structure

Although the saturated random coverage ratio is the main
characteristic of RSA monolayer structure, it carries only
information about the mean density of adsorbed particles. To
gain a deeper insight into the structure of RSA monolayers,
we measured density fluctuations as well as density
autocorrelations for obtained coverages.

Density fluctuations

The typical experimental procedure used for estimation of
density fluctuations of adsorbed particles, described by
Adamczyk et al. [32], can be used also for monolayers
generated by the RSA. Here, for a given coverage ratio θ ,
the collector was divided into square boxes containing at
average ten particles. The normalized variance of the number
of particles in the box nB for the given coverage θ :

σ2 θð Þ ¼ σ2 nB θð Þð Þ< nB θð Þ > i s u s ed a s a dens i t y
fluctuation measure. Its dependence on the coverage ratio θ
is shown in Fig. 5.

It is worth noting that, in a limit of small coverages

ASF θð Þ ¼ σ2 θð Þ [33] . Plots in Fig. 5 confirm this agreement

for θ < 0:2 .

Density autocorrelation

The density autocorrelation function is defined as:

G rð Þ ¼ P rð Þ
2πrρ

; ð7Þ

where P(r )dr is the probability of finding two particles at a
distance between r and r +dr. Here, the distance r is measured
between the geometric centers of the molecules. As ρ is the
mean density of particles inside a covering layer, then
G (r→∞ )=1. In the case of spherical particles, G (r ) has a
logarithmic singularity in the touching limit [24] and
superexponential decay at large distances [34]. Density
autocorrelation functions for trimer and hexamer monolayers
are shown in Fig. 6.

Due to different sized particles, the density autocorrelation
function for hexamers is shifted right compared to that for
trimers. For trimers the first maximum is wide due to particle
shape anisotropy. Therefore, for dense packing, the distance
between closest particles varies because it depends on trimers’
relative orientations. For hexamers of significantly smaller
shape anisotropy, the density autocorrelation function looks
similar to that for spherical particles, and the analytically
predicted logarithmic singularity in the touching limit [24]
can be seen clearly. For trimers, it can also be observed when
restricting to the region to the right of the flat maximum. For
large r, autocorrelations approach the mean density value very
fast, as is also the case for spheres and other particles like
dimers or tetramers.
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Fig. 6 Density autocorrelation function G(r) for trimer and hexamer
models. Inset Logarithmic singularity at r→r t+, where r t is a maximum
of G(r). Parameter r t=4.28 and r t=5.98 for the trimer and hexamer
model, respectively

Table 1 Saturated random
coverage ratio θmax, random
sequential adsorption (RSA)
kinetics exponent d and available
surface function (ASF) low
coverage limit coefficient for the
most common models of particles

Particle type θmax d C1 C2

Sphere [6, 23] 0.545 2.0 4.0 6
ffiffi
3

p
π ≈3:308

Dimer [21, 23] 0.541 2.8 4.84 5.49

3-chain [23] 0.542 4.2 5.28 6.56

Trimer 0.523 3.1 4.76 5.11

4-chain [23] 0.543 6.0 5.54 7.31

Tetramer (rhomboid) [22] 0.521 3.4 4.74 5.09

Tetramer (square) [22] 0.491 3.3 4.84 5.22

Hexamer 0.492 3.3 4.66 4.80

6-chain [23] 0.548 9.8 5.78 8.18
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Summary

The saturated random coverage ratio of a trimer monolayer is
θmax=0.5234. It is smaller than the one for spheres and dimers
and similar to that obtained for rhomboid tetramers [22]. The
saturated coverage ratio for hexamers is θmax=0.4920, which
is similar to the value obtained for the square model of a
tetramer [22]. At the jamming limit, the kinetics of RSA of
trimers and hexamers shows behavior typical of anisotropic
molecules, which is highly unexpected, especially for
hexamers, considering their small shape anisotropy. Properties
of the density autocorrelation function in dense monolayers
are, in general, similar to those observed for spheres
monolayers.

This work completes the analysis of RSA monolayers built
of basic particles composed of identical spheres. Therefore,
for convenience, Table 1 presents together the most important
parameters of such monolayers, based on the results presented
here and the work of others [21–23, 26].

Acknowledgments This work was supported by Polish National
Science Center grant no. UMO-2012/07/B/ST4/00559.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. Ekdahl KN, Hong J, Hamad OA, Larsson R, Nilsson B (2013) Adv
Exp Med Biol 734:257

2. Lu F, HogenEsch H (2013) Vaccine 31:3979

3. Gallet R, Kannoly S, Wang I (2011) Microbiology 11:181
4. Luensmann D, Jones L (2012) Contact Lens Anterior Eye 35:53
5. Pagana AE, Sklari SD, Kikkinides ES, Zaspalis VT (2011) J Membr

Sci 367:319
6. Feder J (1980) J Theor Biol 87:237
7. Talbot J, Tarjus G, Schaaf P (1989) Phys Rev A 40:4808
8. Vigil RD, Ziff RM (1989) J Chem Phys 91:2599
9. Tarjus G, Schaaf P, Talbot J (1991) J Stat Phys 63:167

10. Viot P, Tarjus G (1992) J Chem Phys 97:5212
11. Ricci SM, Talbot J, Tarjus G, Viot P (1992) J Chem Phys 97:5219
12. Sikorski A, Polanowski P, Adamczyk P, Żerko S (2011) J MolModel

17:2209
13. PawłowskaM, Sikorski A (2012) JMol Model. doi:10.1007/s00894-

013-1892-y
14. RabeM, Verdes D, Seeger S (2011) Adv Colloid Interface Sci 162:87
15. Finch C, Clarke T, Hickman JJ (2013) J Comput Phys 244:212–222.

doi:10.1016/j.jcp.2012.07.034
16. Katira P, Agarwal A, Hess H (2012) Adv Mater 21:1599
17. Adamczyk Z (2012) Curr Opin Colloid Interface Sci 17:173
18. Adamczyk Z, Barbasz J, Cieśla M (2010) Langmuir 26:11934
19. Adamczyk Z, Barbasz J, Cieśla M (2011) Langmuir 27:6868
20. Cieśla M, Adamczyk Z, Barbasz J, Wasilewska M (2013) Langmuir

29:7005
21. Cieśla M, Barbasz J (2012) J Stat Mech P03015
22. Cieśla M (2013) J Stat Mech P07011
23. Cieśla M (2013) Phys Rev E 87:052401
24. Swendsen RH (1981) Phys Rev A 24:504
25. Privman V, Wang J-S, Nielaba P (1991) Phys Rev B 43:3366
26. Torquato S, Uche OU, Stillinger FH (2006) Phys Rev E 74:061308
27. Cieśla M, Barbasz J (2012) J Chem Phys 137:044706
28. Cieśla M, Barbasz J (2013) J Chem Phys 138:214704
29. Hinrichsen EL, Feder J, Jossang T (1986) J Stat Phys 44:793
30. Adamczyk Z (2006) Particles at interfaces: interactions, deposition,

structure. Elsevier, Amsterdam
31. Cieśla M, Barbasz J (2013) Surf Sci 612:24
32. Adamczyk Z, Siwek B, Szyk L, Zembala M (1996) J Chem Phys

105:5552
33. Schaaf P, Wojtaszczyk P, Mann EK, Senger B, Voegel JC et al (1995)

J Chem Phys 102:5077
34. Bonnier B, Boyer D, Viot P (1994) J Phys A 27:3671

J Mol Model (2013) 19:5423–5427 5427

http://dx.doi.org/10.1007/s00894-013-1892-y
http://dx.doi.org/10.1007/s00894-013-1892-y
http://dx.doi.org/10.1016/j.jcp.2012.07.034

	Random sequential adsorption of trimers and hexamers
	Abstract
	Introduction
	Model
	Results and discussion
	Kinetics of RSA
	Saturated random coverage ratio
	Adsorption kinetics
	Coverage structure
	Density fluctuations
	Density autocorrelation

	Summary
	References


